4-Factor-Criticality of Vertex-Transitive Graphs

نویسندگان

  • Wuyang Sun
  • Heping Zhang
چکیده

A graph of order n is p-factor-critical, where p is an integer of the same parity as n, if the removal of any set of p vertices results in a graph with a perfect matching. 1-factor-critical graphs and 2-factor-critical graphs are well-known factor-critical graphs and bicritical graphs, respectively. It is known that if a connected vertextransitive graph has odd order, then it is factor-critical, otherwise it is elementary bipartite or bicritical. In this paper, we show that a connected vertex-transitive non-bipartite graph of even order at least 6 is 4-factor-critical if and only if its degree is at least 5. This result implies that each connected non-bipartite Cayley graph of even order and degree at least 5 is 2-extendable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-geodesic transitive graphs of prime power order

In a non-complete graph $Gamma$, a vertex triple $(u,v,w)$ with $v$ adjacent to both $u$ and $w$ is called a $2$-geodesic if $uneq w$ and $u,w$ are not adjacent. The graph $Gamma$ is said to be   $2$-geodesic transitive if its automorphism group is transitive on arcs, and also on 2-geodesics. We first produce a reduction theorem for the family of $2$-geodesic transitive graphs of prime power or...

متن کامل

On the eigenvalues of normal edge-transitive Cayley graphs

A graph $Gamma$ is said to be vertex-transitive or edge‎- ‎transitive‎ ‎if the automorphism group of $Gamma$ acts transitively on $V(Gamma)$ or $E(Gamma)$‎, ‎respectively‎. ‎Let $Gamma=Cay(G,S)$ be a Cayley graph on $G$ relative to $S$‎. ‎Then, $Gamma$ is said to be normal edge-transitive‎, ‎if $N_{Aut(Gamma)}(G)$ acts transitively on edges‎. ‎In this paper‎, ‎the eigenvalues of normal edge-tra...

متن کامل

Perfect Matchings in Edge-Transitive Graphs

We find recursive formulae for the number of perfect matchings in a graph G by splitting G into subgraphs H and Q. We use these formulas to count perfect matching of P hypercube Qn. We also apply our formulas to prove that the number of perfect matching in an edge-transitive graph is , where denotes the number of perfect matchings in G, is the graph constructed from by deleting edges with an en...

متن کامل

Normal edge-transitive Cayley graphs on the non-abelian groups of order $4p^2$, where $p$ is a prime number

In this paper, we determine all of connected normal edge-transitive Cayley graphs on non-abelian groups with order $4p^2$, where $p$ is a prime number.

متن کامل

Product of normal edge-transitive Cayley graphs

For two normal edge-transitive Cayley graphs on groups H and K which have no common direct factor and $gcd(|H/H^prime|,|Z(K)|)=1=gcd(|K/K^prime|,|Z(H)|)$, we consider four standard products of them and it is proved that only tensor product of factors can be normal edge-transitive.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2016